Initial commit and release

This commit is contained in:
2024-07-31 10:08:48 -04:00
commit 360e1cf241
15 changed files with 3053 additions and 0 deletions

View File

@@ -0,0 +1,738 @@
package aws_signing_helper
import (
"bytes"
"crypto"
"crypto/ecdsa"
"crypto/rand"
"crypto/rsa"
"crypto/sha256"
"crypto/x509"
"encoding/asn1"
"encoding/base64"
"encoding/hex"
"encoding/pem"
"errors"
"fmt"
"io"
"log"
"math/big"
"net/http"
"os"
"sort"
"strings"
"time"
"github.com/aws/aws-sdk-go/aws"
"github.com/aws/aws-sdk-go/aws/request"
"golang.org/x/crypto/pkcs12"
)
type SignerParams struct {
OverriddenDate time.Time
RegionName string
ServiceName string
SigningAlgorithm string
}
type CertIdentifier struct {
Subject string
Issuer string
SerialNumber *big.Int
SystemStoreName string // Only relevant in the case of Windows
}
var (
// ErrUnsupportedHash is returned by Signer.Sign() when the provided hash
// algorithm isn't supported.
ErrUnsupportedHash = errors.New("unsupported hash algorithm")
// Predefined system store names.
// See: https://learn.microsoft.com/en-us/windows/win32/seccrypto/system-store-locations
SystemStoreNames = []string{
"MY",
"Root",
"Trust",
"CA",
}
)
// Interface that all signers will have to implement
// (as a result, they will also implement crypto.Signer)
type Signer interface {
Public() crypto.PublicKey
Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) (signature []byte, err error)
Certificate() (certificate *x509.Certificate, err error)
CertificateChain() (certificateChain []*x509.Certificate, err error)
Close()
}
// Container for certificate data returned to the SDK as JSON.
type CertificateData struct {
// Type for the key contained in the certificate.
// Passed back to the `sign-string` command
KeyType string `json:"keyType"`
// Certificate, as base64-encoded DER; used in the `x-amz-x509`
// header in the API request.
CertificateData string `json:"certificateData"`
// Serial number of the certificate. Used in the credential
// field of the Authorization header
SerialNumber string `json:"serialNumber"`
// Supported signing algorithms based on the KeyType
Algorithms []string `json:"supportedAlgorithms"`
}
// Container that adheres to the format of credential_process output as specified by AWS.
type CredentialProcessOutput struct {
// This field should be hard-coded to 1 for now.
Version int `json:"Version"`
// AWS Access Key ID
AccessKeyId string `json:"AccessKeyId"`
// AWS Secret Access Key
SecretAccessKey string `json:"SecretAccessKey"`
// AWS Session Token for temporary credentials
SessionToken string `json:"SessionToken"`
// ISO8601 timestamp for when the credentials expire
Expiration string `json:"Expiration"`
}
type CertificateContainer struct {
// Certificate data
Cert *x509.Certificate
// Certificate URI (only populated in the case that the certificate is a PKCS#11 object)
Uri string
}
// Define constants used in signing
const (
aws4_x509_rsa_sha256 = "AWS4-X509-RSA-SHA256"
aws4_x509_ecdsa_sha256 = "AWS4-X509-ECDSA-SHA256"
timeFormat = "20060102T150405Z"
shortTimeFormat = "20060102"
x_amz_date = "X-Amz-Date"
x_amz_x509 = "X-Amz-X509"
x_amz_x509_chain = "X-Amz-X509-Chain"
x_amz_content_sha256 = "X-Amz-Content-Sha256"
authorization = "Authorization"
host = "Host"
emptyStringSHA256 = `e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855`
)
// Headers that aren't included in calculating the signature
var ignoredHeaderKeys = map[string]bool{
"Authorization": true,
"User-Agent": true,
"X-Amzn-Trace-Id": true,
}
var Debug bool = false
// Find whether the current certificate matches the CertIdentifier
func certMatches(certIdentifier CertIdentifier, cert x509.Certificate) bool {
if certIdentifier.Subject != "" && certIdentifier.Subject != cert.Subject.String() {
return false
}
if certIdentifier.Issuer != "" && certIdentifier.Issuer != cert.Issuer.String() {
return false
}
if certIdentifier.SerialNumber != nil && certIdentifier.SerialNumber.Cmp(cert.SerialNumber) != 0 {
return false
}
return true
}
// Because of *course* we have to do this for ourselves.
//
// Create the DER-encoded SEQUENCE containing R and S:
//
// Ecdsa-Sig-Value ::= SEQUENCE {
// r INTEGER,
// s INTEGER
// }
//
// This is defined in RFC3279 §2.2.3 as well as SEC.1.
// I can't find anything which mandates DER but I've seen
// OpenSSL refusing to verify it with indeterminate length.
func encodeEcdsaSigValue(signature []byte) (out []byte, err error) {
sigLen := len(signature) / 2
return asn1.Marshal(struct {
R *big.Int
S *big.Int
}{
big.NewInt(0).SetBytes(signature[:sigLen]),
big.NewInt(0).SetBytes(signature[sigLen:])})
}
// GetSigner gets the Signer based on the flags passed in by the user (from which the CredentialsOpts structure is derived)
func GetSigner(opts *CredentialsOpts) (signer Signer, signatureAlgorithm string, err error) {
var (
certificate *x509.Certificate
)
privateKeyId := opts.PrivateKeyId
if privateKeyId == "" {
if opts.CertificateId == "" {
if Debug {
log.Println("attempting to use CertStoreSigner")
}
}
privateKeyId = opts.CertificateId
}
if opts.CertificateId != "" && !strings.HasPrefix(opts.CertificateId, "pkcs11:") {
_, cert, err := ReadCertificateData(opts.CertificateId)
if err == nil {
certificate = cert
} else if opts.PrivateKeyId == "" {
if Debug {
log.Println("not a PEM certificate, so trying PKCS#12")
}
if opts.CertificateBundleId != "" {
return nil, "", errors.New("can't specify certificate chain when" +
" using PKCS#12 files; certificate bundle should be provided" +
" within the PKCS#12 file")
}
// Not a PEM certificate? Try PKCS#12
_, _, err = ReadPKCS12Data(opts.CertificateId)
if err != nil {
return nil, "", err
}
return GetFileSystemSigner(opts.PrivateKeyId, opts.CertificateId, opts.CertificateBundleId, true)
} else {
return nil, "", err
}
}
if opts.CertificateBundleId != "" {
if err != nil {
return nil, "", err
}
}
if strings.HasPrefix(privateKeyId, "pkcs11:") {
if Debug {
log.Println("attempting to use PKCS11Signer")
}
if certificate != nil {
opts.CertificateId = ""
}
} else {
_, err = ReadPrivateKeyData(privateKeyId)
if err != nil {
return nil, "", err
}
if certificate == nil {
return nil, "", errors.New("undefined certificate value")
}
if Debug {
log.Println("attempting to use FileSystemSigner")
}
return GetFileSystemSigner(privateKeyId, opts.CertificateId, opts.CertificateBundleId, false)
}
return nil, "", errors.New("unknown certificate type")
}
// Obtain the date-time, formatted as specified by SigV4
func (signerParams *SignerParams) GetFormattedSigningDateTime() string {
return signerParams.OverriddenDate.UTC().Format(timeFormat)
}
// Obtain the short date-time, formatted as specified by SigV4
func (signerParams *SignerParams) GetFormattedShortSigningDateTime() string {
return signerParams.OverriddenDate.UTC().Format(shortTimeFormat)
}
// Obtain the scope as part of the SigV4-X509 signature
func (signerParams *SignerParams) GetScope() string {
var scopeStringBuilder strings.Builder
scopeStringBuilder.WriteString(signerParams.GetFormattedShortSigningDateTime())
scopeStringBuilder.WriteString("/")
scopeStringBuilder.WriteString(signerParams.RegionName)
scopeStringBuilder.WriteString("/")
scopeStringBuilder.WriteString(signerParams.ServiceName)
scopeStringBuilder.WriteString("/")
scopeStringBuilder.WriteString("aws4_request")
return scopeStringBuilder.String()
}
// Convert certificate to string, so that it can be present in the HTTP request header
func certificateToString(certificate *x509.Certificate) string {
return base64.StdEncoding.EncodeToString(certificate.Raw)
}
// Convert certificate chain to string, so that it can be pressent in the HTTP request header
func certificateChainToString(certificateChain []*x509.Certificate) string {
var x509ChainString strings.Builder
for i, certificate := range certificateChain {
x509ChainString.WriteString(certificateToString(certificate))
if i != len(certificateChain)-1 {
x509ChainString.WriteString(",")
}
}
return x509ChainString.String()
}
func CreateRequestSignFunction(signer crypto.Signer, signingAlgorithm string, certificate *x509.Certificate, certificateChain []*x509.Certificate) func(*request.Request) {
return func(req *request.Request) {
region := req.ClientInfo.SigningRegion
if region == "" {
region = aws.StringValue(req.Config.Region)
}
name := req.ClientInfo.SigningName
if name == "" {
name = req.ClientInfo.ServiceName
}
signerParams := SignerParams{time.Now(), region, name, signingAlgorithm}
// Set headers that are necessary for signing
req.HTTPRequest.Header.Set(host, req.HTTPRequest.URL.Host)
req.HTTPRequest.Header.Set(x_amz_date, signerParams.GetFormattedSigningDateTime())
req.HTTPRequest.Header.Set(x_amz_x509, certificateToString(certificate))
if certificateChain != nil {
req.HTTPRequest.Header.Set(x_amz_x509_chain, certificateChainToString(certificateChain))
}
contentSha256 := calculateContentHash(req.HTTPRequest, req.Body)
if req.HTTPRequest.Header.Get(x_amz_content_sha256) == "required" {
req.HTTPRequest.Header.Set(x_amz_content_sha256, contentSha256)
}
canonicalRequest, signedHeadersString := createCanonicalRequest(req.HTTPRequest, req.Body, contentSha256)
stringToSign := CreateStringToSign(canonicalRequest, signerParams)
signatureBytes, err := signer.Sign(rand.Reader, []byte(stringToSign), crypto.SHA256)
if err != nil {
log.Println(err.Error())
os.Exit(1)
}
signature := hex.EncodeToString(signatureBytes)
req.HTTPRequest.Header.Set(authorization, BuildAuthorizationHeader(req.HTTPRequest, req.Body, signedHeadersString, signature, certificate, signerParams))
req.SignedHeaderVals = req.HTTPRequest.Header
}
}
// Find the SHA256 hash of the provided request body as a io.ReadSeeker
func makeSha256Reader(reader io.ReadSeeker) []byte {
hash := sha256.New()
start, _ := reader.Seek(0, 1)
defer reader.Seek(start, 0)
io.Copy(hash, reader)
return hash.Sum(nil)
}
// Calculate the hash of the request body
func calculateContentHash(r *http.Request, body io.ReadSeeker) string {
hash := r.Header.Get(x_amz_content_sha256)
if hash == "" {
if body == nil {
hash = emptyStringSHA256
} else {
hash = hex.EncodeToString(makeSha256Reader(body))
}
}
return hash
}
// Create the canonical query string.
func createCanonicalQueryString(r *http.Request, body io.ReadSeeker) string {
rawQuery := strings.Replace(r.URL.Query().Encode(), "+", "%20", -1)
return rawQuery
}
// Create the canonical header string.
func createCanonicalHeaderString(r *http.Request) (string, string) {
var headers []string
signedHeaderVals := make(http.Header)
for k, v := range r.Header {
canonicalKey := http.CanonicalHeaderKey(k)
if ignoredHeaderKeys[canonicalKey] {
continue
}
lowerCaseKey := strings.ToLower(k)
if _, ok := signedHeaderVals[lowerCaseKey]; ok {
// include additional values
signedHeaderVals[lowerCaseKey] = append(signedHeaderVals[lowerCaseKey], v...)
continue
}
headers = append(headers, lowerCaseKey)
signedHeaderVals[lowerCaseKey] = v
}
sort.Strings(headers)
headerValues := make([]string, len(headers))
for i, k := range headers {
headerValues[i] = k + ":" + strings.Join(signedHeaderVals[k], ",")
}
stripExcessSpaces(headerValues)
return strings.Join(headerValues, "\n"), strings.Join(headers, ";")
}
const doubleSpace = " "
// stripExcessSpaces will rewrite the passed in slice's string values to not
// contain muliple side-by-side spaces.
func stripExcessSpaces(vals []string) {
var j, k, l, m, spaces int
for i, str := range vals {
// Trim trailing spaces
for j = len(str) - 1; j >= 0 && str[j] == ' '; j-- {
}
// Trim leading spaces
for k = 0; k < j && str[k] == ' '; k++ {
}
str = str[k : j+1]
// Strip multiple spaces.
j = strings.Index(str, doubleSpace)
if j < 0 {
vals[i] = str
continue
}
buf := []byte(str)
for k, m, l = j, j, len(buf); k < l; k++ {
if buf[k] == ' ' {
if spaces == 0 {
// First space.
buf[m] = buf[k]
m++
}
spaces++
} else {
// End of multiple spaces.
spaces = 0
buf[m] = buf[k]
m++
}
}
vals[i] = string(buf[:m])
}
}
// Create the canonical request.
func createCanonicalRequest(r *http.Request, body io.ReadSeeker, contentSha256 string) (string, string) {
var canonicalRequestStrBuilder strings.Builder
canonicalHeaderString, signedHeadersString := createCanonicalHeaderString(r)
canonicalRequestStrBuilder.WriteString("POST")
canonicalRequestStrBuilder.WriteString("\n")
canonicalRequestStrBuilder.WriteString("/sessions")
canonicalRequestStrBuilder.WriteString("\n")
canonicalRequestStrBuilder.WriteString(createCanonicalQueryString(r, body))
canonicalRequestStrBuilder.WriteString("\n")
canonicalRequestStrBuilder.WriteString(canonicalHeaderString)
canonicalRequestStrBuilder.WriteString("\n\n")
canonicalRequestStrBuilder.WriteString(signedHeadersString)
canonicalRequestStrBuilder.WriteString("\n")
canonicalRequestStrBuilder.WriteString(contentSha256)
canonicalRequestString := canonicalRequestStrBuilder.String()
canonicalRequestStringHashBytes := sha256.Sum256([]byte(canonicalRequestString))
return hex.EncodeToString(canonicalRequestStringHashBytes[:]), signedHeadersString
}
// Create the string to sign.
func CreateStringToSign(canonicalRequest string, signerParams SignerParams) string {
var stringToSignStrBuilder strings.Builder
stringToSignStrBuilder.WriteString(signerParams.SigningAlgorithm)
stringToSignStrBuilder.WriteString("\n")
stringToSignStrBuilder.WriteString(signerParams.GetFormattedSigningDateTime())
stringToSignStrBuilder.WriteString("\n")
stringToSignStrBuilder.WriteString(signerParams.GetScope())
stringToSignStrBuilder.WriteString("\n")
stringToSignStrBuilder.WriteString(canonicalRequest)
stringToSign := stringToSignStrBuilder.String()
return stringToSign
}
// Builds the complete authorization header
func BuildAuthorizationHeader(request *http.Request, body io.ReadSeeker, signedHeadersString string, signature string, certificate *x509.Certificate, signerParams SignerParams) string {
signingCredentials := certificate.SerialNumber.String() + "/" + signerParams.GetScope()
credential := "Credential=" + signingCredentials
signerHeaders := "SignedHeaders=" + signedHeadersString
signatureHeader := "Signature=" + signature
var authHeaderStringBuilder strings.Builder
authHeaderStringBuilder.WriteString(signerParams.SigningAlgorithm)
authHeaderStringBuilder.WriteString(" ")
authHeaderStringBuilder.WriteString(credential)
authHeaderStringBuilder.WriteString(", ")
authHeaderStringBuilder.WriteString(signerHeaders)
authHeaderStringBuilder.WriteString(", ")
authHeaderStringBuilder.WriteString(signatureHeader)
authHeaderString := authHeaderStringBuilder.String()
return authHeaderString
}
func encodeDer(der []byte) (string, error) {
var buf bytes.Buffer
encoder := base64.NewEncoder(base64.StdEncoding, &buf)
encoder.Write(der)
encoder.Close()
return buf.String(), nil
}
func parseDERFromPEM(pemDataId string, blockType string) (*pem.Block, error) {
b := []byte(pemDataId)
var block *pem.Block
for len(b) > 0 {
block, b = pem.Decode(b)
if block == nil {
return nil, errors.New("unable to parse PEM data")
}
if block.Type == blockType {
return block, nil
}
}
return nil, errors.New("requested block type could not be found")
}
func ReadCertificateBundleData(certificateBundleId string) ([]*x509.Certificate, error) {
bytes, err := os.ReadFile(certificateBundleId)
if err != nil {
log.Println(err)
return nil, err
}
var derBytes []byte
var block *pem.Block
for len(bytes) > 0 {
block, bytes = pem.Decode(bytes)
if block == nil {
break
}
if block.Type != "CERTIFICATE" {
return nil, errors.New("invalid certificate chain")
}
blockBytes := block.Bytes
derBytes = append(derBytes, blockBytes...)
}
return x509.ParseCertificates(derBytes)
}
func readECPrivateKey(privateKeyId string) (ecdsa.PrivateKey, error) {
block, err := parseDERFromPEM(privateKeyId, "EC PRIVATE KEY")
if err != nil {
return ecdsa.PrivateKey{}, errors.New("could not parse PEM data")
}
privateKey, err := x509.ParseECPrivateKey(block.Bytes)
if err != nil {
return ecdsa.PrivateKey{}, errors.New("could not parse private key")
}
return *privateKey, nil
}
func readRSAPrivateKey(privateKeyId string) (rsa.PrivateKey, error) {
block, err := parseDERFromPEM(privateKeyId, "RSA PRIVATE KEY")
if err != nil {
return rsa.PrivateKey{}, errors.New("could not parse PEM data")
}
privateKey, err := x509.ParsePKCS1PrivateKey(block.Bytes)
if err != nil {
return rsa.PrivateKey{}, errors.New("could not parse private key")
}
return *privateKey, nil
}
func readPKCS8PrivateKey(privateKeyId string) (crypto.PrivateKey, error) {
block, err := parseDERFromPEM(privateKeyId, "PRIVATE KEY")
if err != nil {
return nil, errors.New("could not parse PEM data")
}
privateKey, err := x509.ParsePKCS8PrivateKey(block.Bytes)
if err != nil {
return nil, errors.New("could not parse private key")
}
rsaPrivateKey, ok := privateKey.(*rsa.PrivateKey)
if ok {
return *rsaPrivateKey, nil
}
ecPrivateKey, ok := privateKey.(*ecdsa.PrivateKey)
if ok {
return *ecPrivateKey, nil
}
return nil, errors.New("could not parse PKCS#8 private key")
}
// Reads and parses a PKCS#12 file (which should contain an end-entity
// certificate, (optional) certificate chain, and the key associated with the
// end-entity certificate). The end-entity certificate will be the first
// certificate in the returned chain. This method assumes that there is
// exactly one certificate that doesn't issue any others within the container
// and treats that as the end-entity certificate. Also, the order of the other
// certificates in the chain aren't guaranteed (it's also not guaranteed that
// those certificates form a chain with the end-entity certificat either).
func ReadPKCS12Data(certificateId string) (certChain []*x509.Certificate, privateKey crypto.PrivateKey, err error) {
var (
bytes []byte
pemBlocks []*pem.Block
parsedCerts []*x509.Certificate
certMap map[string]*x509.Certificate
endEntityFoundIndex int
)
bytes, err = os.ReadFile(certificateId)
if err != nil {
return nil, nil, nil
}
pemBlocks, err = pkcs12.ToPEM(bytes, "")
if err != nil {
return nil, "", err
}
for _, block := range pemBlocks {
cert, err := x509.ParseCertificate(block.Bytes)
if err == nil {
parsedCerts = append(parsedCerts, cert)
continue
}
privateKeyTmp, err := ReadPrivateKeyDataFromPEMBlock(block)
if err == nil {
privateKey = privateKeyTmp
continue
}
// If neither a certificate nor a private key could be parsed from the
// Block, ignore it and continue.
if Debug {
log.Println("unable to parse PEM block in PKCS#12 file - skipping")
}
}
certMap = make(map[string]*x509.Certificate)
for _, cert := range parsedCerts {
// pkix.Name.String() roughly following the RFC 2253 Distinguished Names
// syntax, so we assume that it's canonical.
issuer := cert.Issuer.String()
certMap[issuer] = cert
}
endEntityFoundIndex = -1
for i, cert := range parsedCerts {
subject := cert.Subject.String()
if _, ok := certMap[subject]; !ok {
certChain = append(certChain, cert)
endEntityFoundIndex = i
break
}
}
if endEntityFoundIndex == -1 {
return nil, "", errors.New("no end-entity certificate found in PKCS#12 file")
}
for i, cert := range parsedCerts {
if i != endEntityFoundIndex {
certChain = append(certChain, cert)
}
}
return certChain, privateKey, nil
}
// Load the private key referenced by `privateKeyId`.
func ReadPrivateKeyData(privateKeyId string) (crypto.PrivateKey, error) {
if key, err := readPKCS8PrivateKey(privateKeyId); err == nil {
return key, nil
}
if key, err := readECPrivateKey(privateKeyId); err == nil {
return key, nil
}
if key, err := readRSAPrivateKey(privateKeyId); err == nil {
return key, nil
}
return nil, errors.New("unable to parse private key")
}
// Reads private key data from a *pem.Block.
func ReadPrivateKeyDataFromPEMBlock(block *pem.Block) (key crypto.PrivateKey, err error) {
key, err = x509.ParseECPrivateKey(block.Bytes)
if err == nil {
return key, nil
}
key, err = x509.ParsePKCS1PrivateKey(block.Bytes)
if err == nil {
return key, nil
}
return nil, errors.New("unable to parse private key")
}
// ReadCertificateData loads the certificate referenced by `certificateId` and extracts
// details required by the SDK to construct the StringToSign.
func ReadCertificateData(certificateId string) (CertificateData, *x509.Certificate, error) {
block, err := parseDERFromPEM(certificateId, "CERTIFICATE")
if err != nil {
return CertificateData{}, nil, errors.New("could not parse PEM data")
}
cert, err := x509.ParseCertificate(block.Bytes)
if err != nil {
log.Println("could not parse certificate", err)
return CertificateData{}, nil, errors.New("could not parse certificate")
}
//extract serial number
serialNumber := cert.SerialNumber.String()
//encode certificate
encodedDer, _ := encodeDer(block.Bytes)
//extract key type
var keyType string
switch cert.PublicKeyAlgorithm {
case x509.RSA:
keyType = "RSA"
case x509.ECDSA:
keyType = "EC"
default:
keyType = ""
}
supportedAlgorithms := []string{
fmt.Sprintf("%sSHA256", keyType),
fmt.Sprintf("%sSHA384", keyType),
fmt.Sprintf("%sSHA512", keyType),
}
//return struct
return CertificateData{keyType, encodedDer, serialNumber, supportedAlgorithms}, cert, nil
}
// GetCertChain reads a certificate bundle and returns a chain of all the certificates it contains
func GetCertChain(certificateBundleId string) ([]*x509.Certificate, error) {
certificateChainPointers, err := ReadCertificateBundleData(certificateBundleId)
var chain []*x509.Certificate
if err != nil {
return nil, err
}
for _, certificate := range certificateChainPointers {
chain = append(chain, certificate)
}
return chain, nil
}